Home  |   Search  |   Contact  |   Conditions  |   Business Solutions  |   About

Create Account   |   Login

Join the world community for sharing Business Info !
 Already have an account ?  Login
Electricity production, transmission and distribution of electricity and natural gas

Electric power transmission or "high voltage electric transmission" is the bulk transfer of electrical energy, from generating power plants to substations located near to population centers. This is distinct from the local wiring between high voltage substations and customers, which is typically referred to as electricity distribution. Transmission lines, when interconnected with each other, become high voltage transmission networks. In the US, these are typically referred to as "power grids" or sometimes simply as "the grid", while in the UK the network is known as the "national grid." North America has three major grids: The Western Interconnection; The Eastern Interconnection and the Electric Reliability Council of Texas (or ERCOT) grid.

Historically, transmission and distribution lines were owned by the same company, but over the last decade or so many countries have introduced market reforms that have led to the separation of the electricity transmission business from the distribution business.

Transmission lines mostly use three phase alternating current (AC), although single phase AC is sometimes used in railway electrification systems. High-voltage direct current (HVDC) technology is used only for very long distances (typically greater than 400 miles, or 600 km); submarine power cables (typically longer than 30 miles, or 50 km); or for connecting two AC networks that are not synchronized.

Electricity is transmitted at high voltages (110 kV or above) to reduce the energy lost in long distance transmission. Power is usually transmitted through overhead power lines. Underground power transmission has a significantly higher cost and greater operational limitations but is sometimes used in urban areas or sensitive locations.

A key limitation in the distribution of electricity is that, with minor exceptions, electrical energy cannot be stored, and therefore it must be generated as it is needed. A sophisticated system of control is therefore required to ensure electric generation very closely matches the demand. If supply and demand are not in balance, generation plants and transmission equipment can shut down which, in the worst cases, can lead to a major regional blackout, such as occurred in California and the US Northwest in 1996 and in the US Northeast in 1965, 1977 and 2003. To reduce the risk of such failures, electric transmission networks are interconnected into regional, national or continental wide networks thereby providing multiple redundant alternate routes for power to flow should (weather or equipment) failures occur. Much analysis is done by transmission companies to determine the maximum reliable capacity of each line which is mostly less than its physical or thermal limit, to ensure spare capacity is available should there be any such failure in another part of the network.

400 kV high-tension transmission lines near Madrid

Gas is one of four classical states of matter. Near absolute zero, a substance exists as a solid. As heat is added to this substance it melts into a liquid at its melting point (see phase change), boils into a gas at its boiling point, and if heated high enough would enter a plasma state in which the electrons are so energized that they leave their parent atoms from within the gas. A pure gas may be made up of individual atoms (e.g. a noble gas or atomic gas like neon), elemental molecules made from one type of atom (e.g. oxygen), or compound molecules made from a variety of atoms (e.g. carbon dioxide). A gas mixture would contain a variety of pure gases much like the air. What distinguishes a gas from liquids and solids is the vast separation of the individual gas particles. This separation usually makes a colorless gas invisible to the human observer. The interaction of gas particles in the presence of electric and gravitational fields are considered negligible as indicated by the constant velocity vectors in the image.

The gaseous state of matter is found between the liquid and plasma states, the latter of which provides the upper temperature boundary for gases. Bounding the lower end of the temperature scale lie degenerative quantum gases which are gaining increased attention these days. High-density atomic gases super cooled to incredibly low temperatures are classified by their statistical behavior as either a Bose gas or a Fermi gas. For a comprehensive listing of these exotic states of matter see list of states of matter

Gas phase particles (atoms, molecules, or ions) move around freely in the absence of an applied electric field.


 

As most gases are difficult to observe directly with our senses, they are described through the use of four physical properties or macroscopic characteristics: the gas’s pressure, volume, number of particles (chemists group them by moles), and temperature. These four characteristics were repeatedly observed by men such as Robert Boyle, Jacques Charles, John Dalton, Joseph Gay-Lussac and Amedeo Avogadro for a variety of gases in a great many settings. Their detailed studies ultimately led to a mathematical relationship among these properties expressed by the ideal gas law (see simplified models section below).

Gas particles are widely separated from one another, and as such do not influence adjacent particles to the same degree as liquids or solids. This influence (intermolecular forces) results from the magnetic charges that these gas particles carry. Like charges repel, while oppositely charged particles attract one another. Gases made from ions carry permanent charges, as do compounds with their polar covalent bonds. These polar covalent bonds produce permanent charge concentrations within the molecule while the compound’s net charge remains neutral. Transient charges exist in covalent bonds of molecules and are referred to as van der Waals forces. The interaction of these intermolecular forces varies within a substance which determines many of the physical properties unique to each gas. A quick comparison of boiling points for compounds formed by ionic and covalent bonds leads us to this conclusion. The drifting smoke particles in the image provides some insight into low pressure gas behavior.

Compared to the other states of matter, gases have an incredibly low density and viscosity. Pressure and temperature influence the particles within a certain volume. This variation in particle separation and speed is referred to as compressibility. This particle separation and size influences optical properties of gases as can be found in the following list of refractive indices. Finally, gas particles spread apart or diffuse in order to homogeneously distribute themselves throughout any container.

Drifting smoke particles provide clues to the movement of the surrounding gas.
Expanding gases link to changes in specific volume.
21 April 1990 eruption of Mount Redoubt, Alaska, illustrating real gases not in thermodynamic equilibrium.

Boyle’s Law

Boyle’s equipment.
Boyle’s Law was perhaps the first expression of an equation of state. In 1662 Robert Boyle performed a series of experiments employing a J-shaped glass tube, which was sealed on one end. Mercury was added to the tube, trapping a fixed quantity of air in the short, sealed end of the tube. Then the volume of gas was carefully measured as additional mercury was added to the tube. The pressure of the gas could be determined by the difference between the mercury level in the short end of the tube and that in the long, open end. Through these experiments, Boyle noted that the gas volume varied inversely with the pressure. The image of Boyle’s Equipment shows some of the exotic tools used by Boyle during his study of gases.




 



From Wikipedia, the free encyclopedia : Electricity production, transmission and distribution of electricity and natural gas
If you like to see your banner here please go to  Business Solutions